Dynamic Sensor Bias Correction for Attitude Estimation Using Unscented Kalman Filter in Autonomous Vehicle
نویسندگان
چکیده
Abstract. This paper describes a method for estimating sensor biases by using a lowdimensional Unscented Kalman Filter (UKF) to maintain the positional estimation accuracy of an autonomous vehicle (AV). It is difficult to estimate attitude accurately in a blind situation (such as with no GPS satellites and no landmarks), because of sensor bias. We developed a dead reckoning system for an embedded system using the UKF. The UKF has high computational effort, so, we decreased the number of dimensions in the UKF by excluding sensor biases term. On the presumption that AV drives steadily, we derived equations for the relationship between the averages of angular acceleration and gyro bias, and corrected the sensor output. Instead of using high-dimensional UKF, we corrected sensor biases by using these equations. This method quickly and accurately estimated attitude.
منابع مشابه
Real Time Calibration of Strap-down Three-Axis-Magnetometer for Attitude Estimation
Three-axis-magnetometers (TAMs) are widely utilized as a key component of attitude determination subsystems and as such are considered the corner stone of navigation for low Earth orbiting (LEO) space systems. Precise geomagnetic-based navigation demands accurate calibration of the magnetometers. In this regard, a complete online calibration process of TAM is developed in the current research t...
متن کاملIdentification of an Autonomous Underwater Vehicle Dynamic Using Extended Kalman Filter with ARMA Noise Model
In the procedure of designing an underwater vehicle or robot, its maneuverability and controllability must be simulated and tested, before the product is finalized for manufacturing. Since the hydrodynamic forces and moments highly affect the dynamic and maneuverability of the system, they must be estimated with a reasonable accuracy. In this study, hydrodynamic coefficients of an autonomous un...
متن کاملDesign and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter
This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...
متن کاملRotated Unscented Kalman Filter for Two State Nonlinear Systems
In the several past years, Extended Kalman Filter (EKF) and Unscented Kalman Filter (UKF) havebecame basic algorithm for state-variables and parameters estimation of discrete nonlinear systems.The UKF has consistently outperformed for estimation. Sometimes least estimation error doesn't yieldwith UKF for the most nonlinear systems. In this paper, we use a new approach for a two variablestate no...
متن کاملSensitivity Analysis of Extended and Unscented Kalman Filters for Attitude Estimation
The extended Kalman filter (EKF) and unscented Kalman filter (UKF) for nonlinear state estimation with both additive and nonadditive noise structures are presented and compared. Three different Global Positioning System (GPS)/inertial navigation system (INS) sensor fusion formulations for attitude estimation are used as case studies for the nonlinear state estimation problem. A diverse set of a...
متن کامل